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Abstract—In this paper, we present a method for improving the
performance of Evolutionary Algorithms. Our method works by
treating the population of the EA as an ensemble model. We find
that our method substantially outperforms our baseline models
at almost no additional computational cost.

Index Terms—Evolutionary Algorithms, Evolutionary Strate-
gies, Ensembles, Genetic Algorithms

I. INTRODUCTION

Ensemble models (which work by using multiple diverse
models to predict an outcome) have shown great success
in solving optimization problems by reducing overfitting,
variance, and model uncertainty. In theory, we assume each
model in the ensemble to be independent and unbiased, but
in practice, we can often see benefits from less principled
approaches that do not meet these assumptions. For example,
Bootstrap aggregating works by fitting each model in the
ensemble to a dataset D; sampled uniformly with replacement
from D. With neural networks, it has been shown that we can
see benefits by not even training the models from scratch and
instead just retraining the last layer of the neural network.

In this paper, we examine ensemble-style approaches for
Evolutionary Algorithms (EAs). While a theoretically princi-
pled approach to ensembles in EA would require training n
different EAs and using one of many possible approaches to
combine the best solutions from each different EA, this is
costly. It requires training n different EAs. We notice that the
population of a single EA already looks somewhat like an
ensemble of models, where each member of the EA popula-
tion represents its own model. Maybe we can treat the EA
population itself as a type of ensemble model. If this works,
it would be possible to train any EA, with no restrictions,
and then afterward combine that population into an ensemble
model improving performance. This could potentially improve
performance at almost no cost and without enforcing any
constraints on the EA. Another method would be to try using
the population as an ensemble but promoting diversity in the
population through methods like Fitness Sharing [1], Crowd-
ing [2], or Islands of Fitness [3]. (We know from experimental
results that ensembles tend to work best when members of
the ensemble are diverse and typical EAs populations tend to
converge, so diversity-promoting methods could offer some
benefits). These diversity-promoting methods should improve
the ensembles without adding substantial computation costs or

restrictions on the EA, by using the population of an EA as
an ensemble.

We suspect that it is possible to see many of the benefits
of using ensemble models in EAs — i.e., reducing overfitting,
variance, and model uncertainty — without the extra com-
putation of training n different EAs. Possibly we will be
able to see improvements by just treating the population as
an ensemble, but we might need to use additional diversity-
preserving techniques to ensure our ensemble models are not
too similar. Either way, if this works, then we would have a
simple and low-cost way to improve the performance of EA
models.

II. BACKGROUND
A. Ensembles

Ensembles are a method for combining multiple diverse
models in order to make a prediction. They have shown strong
performance in reducing overfitting, variance, and model
uncertainty. The intuition behind ensemble models is that
many mediocre models can outperform an exceptional model
assuming that the mediocre models are unbiased and diverse
enough. One refrain (which doesn’t provide the theory but
is instructive nonetheless) is the story of statistician Francis
Galton, who observed a 1906 county fair competition to guess
the weight of an ox. Galton observed that the average guess
(1,197 1bs.) was very close to the true weight of the ox (1,198
Ibs.) [4]. (NPR repeated the experiment in 2015 and found
similar results) [5].

There are many methods for implementing ensembles the
most theoretically principled of which is the Bayes Optimal
Classifier, i.e., the ensemble of all the hypotheses in the
hypothesis space, but because of computational costs ap-
proximations are usually used. One such approximation is
Bootstrap Aggregating (bagging) [6]. In bagging, each model
is trained on a bootstrap dataset D;, created by sampling with
replacement from the original dataset D;, and predictions are
made with the ensemble of models using voting. Another com-
mon approximation to use is boosting [7]. In boosting, each
model is trained on a dataset with each datapoint weighted
proportional to how many previous models misclassified the
datapoint. So, data points that are misclassified more often are
assigned larger weights in the new dataset. Inference is done
through voting.



There are many more approaches to ensemble models, but
the above should provide sufficient background to understand
this paper.

B. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a broad approach to
solving optimization problems loosely based on biological
evolution. While there are many different types of EAs, they
all have the same structure. Namely, an initial population of
individuals is created and then the following is repeated until
a termination condition is met: parents are selected from the
population, the parents are recombined to create offspring, the
offspring are mutated, the quality of individuals is evaluated,
and the best individuals are selected for the next generation.

The procedure is given in algorithm 1 [&].

Algorithm 1 Evolutionary Algorithm

1: INITIALIZE population with random candidate solutions

2: while TERMINATION CONDITION is false do
3: SELECT parents;

4. RECOMBINE pairs or parents;

5:  MUTATE the resulting offspring;

6: EVALUATE new candidates;

7:  SELECT individuals for the next generation;
8: end while

Each of the steps in algorithm 1 above are intentionally
vague, as there are many different choices for how they can
be specified.

C. Evolutionary Strategies

Evolutionary Strategies (ES) are a particular class of
EA. Corresponding to particular choices for representation,
recombination, mutation, parent selection, and survivor
selection.

1) Representation: In ESs, individuals in the population
are represented as real-valued vectors. This is in contrast to
other EAs like genetic algorithms (GAs) where individuals
are represented as binary strings.

2) Recombination: ESs use either discrete or intermediate
recombination. In discrete recombination, each allele of
the offspring is chosen to be one of the two parent
alleles randomly with equal probability for each parent. In
intermediate recombination, the parent allele vectors are
averaged.

3) Mutation: ESs use Gaussian perturbation to mutate
population individuals. In this paper, we use a specific variant
of Gaussian perturbation called uncorrelated mutation with n
step sizes [9]. In this scheme, each individual (z1,...,x,) is
extended with n step sizes (z1,...,%n,01,...,0,) and the
mutation is specified as follows:

a'g =0; X o™ N(0,1)+7N;(0,1) )

;= + o x N;(0,1) (2)

Where 7/ o< 1/v/2n, and 7 o< 1/4/2+/n.

4) Parent Selection: ESs use uniform random parent
selection so that each individual in the population has an
equal probability of being selected.

5) Survivor Selection: ESs use deterministic elitist replace-
ment either by (u, A) or (14 ) selection. Deterministic elitist
replacement means that the best p individuals are kept and
the remaining are discarded. In (x + \) selection, the best
individuals are chosen from both the parents and the offspring.
In (u, A) selection, the best u individuals are chosen to keep
are picked just from the offspring; this means that parents are
discarded after one generation.

D. Diversity Preservation in Evolutionary Strategies

Since ESs use a population-based approach they have the
potential to evolve many quality solutions, but because of
genetic drift and other factors, it is common for an ES’s
population to converge around one solution. Luckily, there
has been much research examining approaches to preserve
diversity in ESs. One such approach is Islands of Fitness.

Islands of Fitness works by dividing a population into sub-
populations that evolve parallel, with some kind of commu-
nication structure between the sub-populations. For instance,
the sub-populations can be arranged in a ring, where adjacent
sub-populations can exchange members every n generations.
The hope is that each sub-population will evolve different
solutions. Achieving this hope requires careful population
initialization as well as carefully regulating how many popula-
tion members are exchanged. Too similar initialization or too
much communication can result in all of the sub-populations
evolving similar solutions.

E. Iris Dataset

The iris dataset is a dataset containing measurements from
150 different iris flowers. The dataset contains measurements
corresponding to sepal length, sepal width, petal length, and
petal width for each flower. There are 3 different classes of
flowers in the dataset: Setosa, Versicolor, and Virginica. Each
of the 3 classes of flowers has 50 data points.

III. RELATED WORK

While there has much work on both ensembles and evolu-
tionary algorithms over the years, as far as I know, there is
no work looking at ensembles specifically applied to EAs or
work looking at using the population of an EA as an ensemble
of models.



IV. EXPERIMENTS

A. Experiment 1

The first thing that I wanted to test was if I could get any
improvement over a standard approach, by simply treating the
population of the EA as an ensemble, but leaving everything
else the same. The strength of this approach is that I would
require no restrictions on how the EA was trained and require
very little additional computation and no additional computa-
tion in training. To test this approach I evolved an ES to the
iris dataset with the following hyperparameters:

Hyperparameter  Value | Hyperparameter Value
I 15 A 100
T 0.5 L 0.34
Mutation Rate 0.05 Recombination Rate 0.0

Survivor Selection
Recombination Type

(15 )
Intermediate

uncorrelated mutation
with n step sizes

Mutation Type

TABLE I: EA Hyperparameters

To classify the iris dataset, split the dataset into 125 data
points for evolving the ES and 25 data points for testing the
ES. I was trying to use the ES to evolve a matrix W. So that
if X is n by k£ matrix where n is the number of data points
we are using to evolve the ES — 125 in this case — and k is
the number of features in our dataset — 4 in this case: sepal
width, sepal length, petal width, and petal length — and W is
an k by c matrix, where c is the number of classes dataset.
Then we can predict the classes y by calculating:

y = argmax(X W) 3)

where the argmax is taken over the classes. Then y is a
n dimensional vector containing the prediction for each data
point. For the fitness function, I use classification accuracy.

Even though this model is a fairly simple linear model,
it is powerful enough to evolve good classification accuracy
on the training data. To demonstrate this we present Figure
1, showing the max and average fitness during the evolving
process. We present these results averaged over 1000 runs to
reduce variance.
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Fig. 1: max and average fitness during evolution process on
iris dataset, averaged over 1000 runs

We can see that even though the model is a simple linear
model, it is able to achieve good classification accuracy.

We ran this ES 1000 times for 100 generations each run.
For each run, we compared the classification accuracy on the
test data of the best-performing model vs an ensemble model,
using the entire population of 15 for voting. We then calculated
the performance on the test set. The average performance of
the baseline model over 1000 runs was 0.886; the average
performance of the ensemble model of 1000 runs was 0.884.
We present the plot of the performances in each run in Figure
2.
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Fig. 2: classification accuracy of baseline vs. ensemble

We believe the reason that there wasn’t much difference
between the baseline model and the ensemble model is that
the models in the ensemble were not sufficiently different.
We suspect that one of the reasons for the lack of diversity
is that problem we evolved a solution for is convex, and in
many of the runs, it is likely that there is only one possible
line that can be evolved to achieve the highest classification
accuracy on the training data. To test this hypothesis, we will



look at evolving a classifier for only the first two classes for the
iris dataset. Since the first two classes of the iris dataset are
linearly separable, there will be an infinite number of lines
that can be evolved by our ES with the same classification
accuracy, i.e., with no selection pressure between them. This
should increase diversity somewhat. To test this hypothesis
we will evolve a model to only the first two classes of the iris
dataset.

B. Experiment 2

For the second experiment, we trained to evolve a classifier
to classify the first two classes in the iris dataset. This means
that the dataset now only has 100 total data points. (Since
the first two classes are linearly separable, it is fairly easy
to achieve 100% classification accuracy on training data). We
split the data into 75 training points and 25 testing points, and
we ran the ES, with the same hyperparameters as in experiment
1, for 1000 runs. The average testing accuracy that we got for
the baseline was 0.998 and the average testing accuracy for the
ensemble was 0.999. While the actual increase from 0.998 to
0.999 is not that large, our ensemble approach decreases the
number of misclassified points by half from 0.002 down to
0.001.

We present Figure 3 showing the classification accuracy on
the test data over the 1000 runs.
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Fig. 3: classification accuracy of baseline vs. ensemble

In Figure 3, we can see the performance of the baseline
and ensemble approaches. While both approaches have good
classification accuracy, never dropping below 0.92, or 2 of 25
points misclassified, the ensemble approach does noticeably
better, misclassifying half as many points. But since the values
are fairly close together, we decided to do a one-sided t-test.
The one-sided t-test returns a p-value of 0.03. For o = 0.05,
this means that we can reject the null hypothesis baseline >
ensemble for the alternative: ensemble > baseline.

C. Experiment 3

For the next experiment, we would like to use the same
approach as experiment 2, but this time with noise and/or shifts

added to the testing data. This would simulate distributional
shift, i.e., a situation where the test data comes from a slightly
different distribution than the training data. We believe that
distributional shift could be interesting to test since the world
is rarely static and distributional shift is widespread. For
example, a model built to detect scam emails will likely
experience distributional shift as scammers try to change their
emails to fool the model. Also, we would expect to see more
variation between the standard and ensemble approaches under
distributional shift if the ensemble approach is learning a more
robust classifier.

For this experiment, we run three-thousand runs on the iris
dataset. The first 1000 runs will have noise added to the test
data sampled from a normal distribution, the second 1000 runs
will have a shift applied to the test data sampled from the
normal distribution, and the final 1000 runs will have both
noise and shift sample from a normal distribution added to
the test data.

For the first 1000 runs, we added noise sampled from a
Gaussian with a standard deviation of 0.5 to the test data and
compared the standard and ensemble approaches. We saw a
mean classification accuracy of 0.928 for the baseline approach
and 0.939 for the ensemble approach, averaged over 1000 runs.
We present a plot comparing classification accuracies in Figure
4. For a two-sided t-test, the p-value is 0.00026.
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Fig. 4: classification accuracy of baseline vs. ensemble with
noise

For the second 1000 runs, we added a shift sampled from
a Gaussian with a standard deviation of 0.5 to the test data
and compared the standard and ensemble approaches. We saw
a mean classification accuracy of 0.930 for the baseline ap-
proach and a classification accuracy of 0.937 for the ensemble
approach. For a two-sided t-test the p-value is 0.29. We present
a plot comparing the classification accuracies in Figure 5.
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Fig. 5: classification accuracy of baseline vs. ensemble with
shift

For the third 1000 runs, we added both shift and noise
sampled from a Gaussian with a standard deviation of 0.25 and
compared the standard and ensemble approaches. We saw a
mean classification accuracy of 0.967 for the baseline approach
and 0.973 for the ensemble approach. For a two-sided t-test the
p-value is 0.032. We present a plot comparing the classification
accuracies in Figure 6.
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Fig. 6: classification accuracy of baseline vs. ensemble with
shift and noise

Compared to the results from experiment 2, the results,
from experiment 3, with distributional shift improved more
in classification accuracy over the baseline but didn’t decrease
the percentage of misclassified points by the same amount. We
believe that the reason ensembles didn’t decrease the percent-
age of misclassified points by as much as under distributional
shift (only ~ 10% under distributional shift compared to 50%
without) is that since the first two iris classes fairly easily
classified, a good classifier can classify all of the test points
perfectly if unless we get a very unfortunate train-test split,

but under distributional shift, there are many points that even
a great classifier will misclassify.

Overall, the results have been promising, as we have seen
the ensemble approach can achieve some improvement over
the baseline with almost no additional computational overhead
and no additional restrictions on the EA.

Going forward, we will see if it is possible to further
improve the performance of our approach by using diversity-
preserving techniques.

D. Experiment 4

Inspired by the increase in performance that we saw going
from experiment 1 to experiments 2 and 3, we will try to
further increase diversity. This time we will use a diversity-
preserving technique to increase the diversity of the models
in the ensemble. We hope that this will further improve
performance.

For this experiment, we will use an Islands of Fitness
approach over ES sub-populations. Each ES sub-population
will have the same hyperparameters as those in Table I. We
will evolve three different sub-populations arranged in a ring
so that adjacent populations can exchange 1 population mem-
bers every 25 generations. We initialize the sub-populations
uniformly at random between non-overlapping intervals. The
first sub-population is initialized between —30 and —10; the
second sub-population is initialized between —10 and 10; the
third sub-population is initialized between 10 and 30. We
will compare the approaches to an Island of Fitness model
baseline, using the same hyperparameters, but picking the
best performing population individual instead of an ensemble.
(Note: since each subpopulation is the same size as the
population in experiments 1 through 3, we have three times as
many members in the total population for the Islands of Fitness
approach, because of this it is dangerous to directly compare
results with the first three experiments since the computational
cost to evolve these models is higher. We chose to increase the
population size, and therefore the computational cost, because
we felt if we keep the total population size at 15, then the
subpopulations would be too small.)

We start by running this algorithm on the same problem
as experiment 1. Namely, we evolve a classifier for the Iris
dataset with 125 datapoints used for the training set and 25
datapoints used for the testing set. For this experiment, we
don’t have any distributional shift. The results of 1000 training
runs are presented in the histogram in Figure 7.
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Fig. 7: classification accuracy of baseline vs. ensemble

The mean classification accuracy of the baseline model is
0.933 and the mean classification accuracy of the ensemble is
0.933. So, there does not appear to be an impact from using
ensembles in this strictly convex problem. This matches what
we observed in experiment 1. The new information that we
gained is that diversity preserving techniques don’t seem to
help for strictly convex problems, as expected. Although the
classification accuracies are higher in this experiment than
in experiment 1, this is explained by the use of the more
computationally expensive Islands of Fitness model.

In the next experiments, to make the problem not strictly
convex we will replicate what we did in experiments 2 and
3 with the Islands of Fitness model. Namely, we will evolve
a classification model over the first two classes of Iris. This
makes the problem convex, but no longer strictly convex.

E. Experiment 5

For the first part of this experiment, we run the Islands
of Fitness model with and without the ensemble approach to
classify the first two classes of the Iris dataset. The results are
presented in Figure 8.
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Fig. 8: classification accuracy of baseline vs. ensemble

The mean fitness for the ensemble model is 0.9998 and the
mean fitness for the baseline model is 0.9976. And the p-value
for a two-sided t-test is 1.94%10719. So, even though the mean
classification accuracies don’t look too different from what we
saw in experiment 2 (an increase of 0.001 for experiment 2
versus an increase of 0.0022 for experiment 5) this is a much
stronger result as demonstrated by the p-value for the t-test. In
this experiment, we were able to reduce the average percentage
of misclassified points by 92% from 0.0024 down to 0.0002
by the use of the ensemble model. This result reinforces our
belief that diversity-preserving techniques help improve our
ensemble method.

F. Experiment 6

For the sixth experiment, we will mirror what we did in
Experiment 3. Namely, we will repeat the results of Exper-
iment 5, but this time adding distributional shift to the test
data, through Gaussian noise and shift.

First, we add Gaussian shift to the test data sampled from
a Gaussian with a standard deviation of 0.5. We ran 1000
different runs of our ES. The results can be seen in Figure 9.
In this test, the mean classification accuracy for the ensemble
model is 0.965 and the mean classification accuracy for the
Islands of Fitness baseline is 0.932. When we run a two-sided
t-test, we get a p-value of 2.05 x 10736,
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Fig. 9: classification accuracy of baseline vs. ensemble with
noise

The results from this experiment mirror the experiment
shown in Figure 4, where we had a mean classification accu-
racy of 0.928 for the non-Islands of Fitness baseline and 0.939
for the non-Islands of Fitness ensemble model. Notice that the
non-Islands of Fitness ensemble model from 4 outperforms the
baseline Islands of Fitness model despite using a population
of one-third the size baseline Island of Fitness model and
therefore substantially less compute. Additionally, we can see
that the performance increase of using an ensemble is greatly
improved by using it in addition to an Island of Fitness model.

Next, we will examine the results of adding a shift to the
test data sampled from a Gaussian with a standard deviation



of 0.5. We again run 1000 runs of the algorithms. The results
are in Figure 10.
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Fig. 10: classification accuracy of baseline vs. ensemble with
shift

The mean classification accuracy of the ensemble model
is 0.966 and the mean classification accuracy of the baseline
model is 0.934. We ran a two-sided t-test and got a p-value
of 3.23 x 10~Y. This experiment mirrors what we saw in the
previous experiment. The Islands of Fitness baseline model is
outperformed by the non-Islands of Fitness ensemble model
from Figure 5 despite using one-third of the population size.
Additionally, we can see that the improvements from using our
ensemble approach is greater when paired with the Islands of
Fitness approach.

For the final 1000 runs, we will compare the Islands of
Fitness approach with and without our ensemble approach.
This time adding both noise and shift sampled from a Gaussian
with a standard deviation of 0.25 and a mean of 0.0.

The results are presented in Figure 11.
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Fig. 11: classification accuracy of baseline vs. ensemble with
noise and shift

Here the Islands of Fitness ensemble has an average classifi-
cation accuracy of 0.988 and the Islands of Fitness baseline has
an average classification accuracy of 0.969. A two-sided t-test
returns a p-value of 5.28 % 10716, Here we results mirror what
we saw before, the non-Islands of Fitness ensemble model
(shown in Figure 6) outperforms the Islands of Fitness baseline
despite using substaintually less compute. Additionally, we see
that same theme, namely that diversity preservation techniques
seem to help performance for our ensemble method. This is
demonstrated by the much larger improvement in classification
accuracy compared to the improvement we saw in Figure 6.

The key takeaways from this experiment are that in all runs
the non-Island of Fitness ensemble model performed better
than the Island of Fitness baseline despite using much less
compute and the diversity-preservation techniques like Islands
of Fitness seem to improve performance for our ensemble style
model.

For the next experiment, we will run our ensemble model
on a non-convex problem.

G. Experiment 7

For this experiment, we will evolve an ES to classify an
XOR dataset. The XOR data consists of two features, if both
features are positive or both features are negative then the
datapoint has class 1, otherwise the datapoint has class 0. The
dataset contains 200 datapoints and can be seen in Figure 12
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Fig. 12: XOR Dataset

To evolve an ES to classify the XOR dataset we will evolve
the parameters of a simple neural network. The network will
have one hidden layer with three hidden units and ReLU
activations. So, that we can calculate the logits using the
equation below:

logits = relu(XW7 4 b1)Wa + by “)

Where X is the training data and W3, by, Wy, and by are
the parameters of the neural network that we evolve. We will
use an Islands of Fitness EA using the same hyperparameters



as we used in Experiments 4, 5, and 6. We include the
hyperparameters in Table II below:

Hyperparameter Value \ Hyperparameter Value
m 45 A 100
T 0.5 el 0.34
Mutation Rate 0.05 Recombination Rate 0.0
Mutation Type uncorrelated mutation | Survivor Selection (py N)

with n step sizes Recombination Type  Intermediate

Diversity Preservation  Islands of Fitness Subpopulation Size 15

TABLE II: EA Hyperparameters

We ran our EA for 1000 runs and got a mean classification
accuracy of 0.982 for the baseline Islands of Fitness model
and a classification accuracy of 0.989 for the ensemble Islands
of Fitness model. The p-value from a two-sided t-test is
3.01 % 1075, This is a clear increase from the ensemble
approach unlike what we saw on the strictly convex problems
in experiments 4 and 1. We can see the results in Figure 13.
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Fig. 13: classification accuracy of baseline vs. ensemble

For the next 1000 runs, we will run our ES with noise
sampled from a Gaussian with a mean of 0.0 and a standard
deviation of 0.5. The mean classification accuracy for the
Islands of Fitness baseline is 0.980 and the mean classification
accuracy for the Islands of Fitness ensemble is 0.987. A two-
sided t-test returns a p-value of 4.90 * 10~?. We present the
results in Figure 14
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Fig. 14: classification accuracy of baseline vs. ensemble with
noise

For the next 1000 runs, we will run our ES with a shift
sampled from a Gaussian with a mean of 0.0 and a standard
deviation of 0.5. The mean classification accuracy for the
Islands of Fitness baseline is 0.981 and the mean classification
accuracy for the Islands of Fitness ensemble is 0.987. A two-
sided t-test returns a p-value of 5.75 * 1076, We present the
results in Figure 15.
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Fig. 15: classification accuracy of baseline vs. ensemble with
shift

For the final 1000 runs, we run our ES with shift and noise
both sampled from a Gaussian with a mean of 0.0 and a
standard deviation of 0.5. The mean classification accuracy
of the Islands of Fitness baseline is 0.977 and the mean
classification accuracy for the Islands of Fitness ensemble is
0.984. A two-sided t-test returns a p-value of 1.49 %1075, We
can see the results in Figure 16.
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Fig. 16: classification accuracy of baseline vs. ensemble with
noise and shift

In this experiment, we saw similar results to the previous ex-
periments. Namely, we saw that the ensemble model improves
classification accuracy. The new thing that we learned is that
the ensemble model seems to help substantially in non-convex
problems even without distributional shift.

V. DISCUSSION

In this paper, we tried to treat the population of an EA as
an ensemble. Our approach aimed to see if we could improve
the performance of EAs at almost no cost. In Experiments
1, 2, and 3 we saw that our ensemble approach was able to
improve the performance on the Iris dataset at almost no cost.
In Experiments 4, 5, 6, and 7 was saw that we could get more
improvements from our method by adding diversity-preserving
techniques like Islands of Fitness. The only negative result we
saw was that our method doesn’t seem to help much when the
problem is strictly convex. This was expected since ensembles
need diversity to work. Additionally, this negative result isn’t
very consequential since strictly convex problems are rare, out
method is almost no cost, and strictly convex problems are not
best solved by EAs in the first place.

A. Future Work

With the time and computing resources that we had, we
didn’t get to run every experiment that we would have liked
to. It would be interesting to try our approach with different
EAs. In our work, we only tried our approach with Evo-
lutionary Strategies, but our approach should extend to any
EA: Genetic Algorithms, Evolutionary Programming, Genetic
Programming, etc. Additionally, it could be interesting to try
our approach with different diversity-preserving techniques.
We used Islands of Fitness models, but we could also use
Fitness Sharing or Crowding. Finally, there are many different
more diverse problems that we could run our algorithm on. In
this work, we focused on classification, but there is no reason
that we need to use classification.
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