Deep Learning Project

1. [Bonus question] Demonstrate a good understanding of the data that involves
visualizing data and show how this understanding is used in model design. You
are not required to answer this question, but extra points will be offered if you
answer this. [5 points]

(Note: Full code provided in separate file)

First, we load in “Set_1.npz". To start off, let’s look at the shape of the data:
Examining data shape

° # Train loader
for setID in train_set idx:
train set = MyDataset(setID)
train loader = torch.utils.data.Dataloader(train_set,
batch_size=128,
shuffle=True)
print(setID)
for X train, y train in train loader:
print (f£"X Shape: {X train.shape}")
print(f"y Shape: {y train.shape}\n")
break

1
X Shape: torch.Size([128, 4, 4000])

y Shape: torch.Size([128, 4000])

We have a batch size of 128. Our X is a Tensor of size 4*4000, and our y is a tensor of
size 4000.

From the provided project description, we know that the X first dimension of X
represents the 4 features, and the second dimension represents 4000 points in space

along straight line.

Now, let's examine if the dataset has any nans.



° # Train loader
for setID in train_set idx:
train_set = MyDataset(setID)
train loader = torch.utils.data.DatalLoader(train_set,
batch_size=128,
shuffle=True)

print (setID)

for X train, y_train in train_loader:
print (£"Num y NaNs: {torch.sum(y_ train.isnan())}")
print (£"Num X NaNs: {torch.sum(X train.isnan())}")

break

> 1

Num y NaNs: 3998
Num X NaNs: 0

It appears that X doesn’t have any nans, but y has 3998 nans about of 128*4000 total values.
That is ~1% of the data in y. We will need to handle this somehow (maybe by setting the values

to 0).

Now, let’s look at the head of the data.

° # Train loader
for setID in train_set_ idx:
train_set = MyDataset(setID)
train_loader = torch.utils.data.DatalLoader(train_set,
batch size=128,
shuffle=True)

print (setID)

for X train, y_train in train_loader:
print(f"X: {X train[O, :, 0:10]}")
print(f"y: {y_train[0, 0:10]}\n")
break

1
X: tensor([rro., o0., o., o0., o., o., 0., 0., 0., 0.7,

(o., o., o., o., 0., 0., 0., 0., 0., 0.1,

(o., o., o., o., 0., 0., 0., 0., 0., 0.1,

., o., o., o., 0., 0., 0., 0., 0., 0.11)
y: tensor([o., o., 0., 0., 0., 0., 0., 0., 0., 0.1)




That is a lot of zeroes.

Let’s try graphing X:
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It looks almost like y is trying to predict location of the peaks in the first two features of X. Let’s
try superimposing the graphs.
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Yup. It seems like we are trying to find the peaks. I’'m not exactly sure what the 3 and 4t
feature of X are, but it seems like we are trying to find the peaks in the first two features of X.
I’m somewhat familiar with task similar to this. For example, | have some knowledge for
processing audio to try and identify the time that certain events happen in the track. (This
problem seems somewhat similar). For these problems, it is typical to use RNNs or 1
dimensional CNNs. So, | think that | will try both a bi-directional RNN and a CNN architecture. |
might also train a fully connected network as a baseline.



2. Clearly show at least three different model designs and your rationale for
choosing them, and the three performance metrics (loss, efficiency, fp_rate) on
the validation set. You want to have these three models vastly different from one
another. For example, choosing three MLP with different #hidden units would be
a bad choice. You are welcome to explore more than three models, as this will
increase your chance of arriving at a better model for optimum performance on
test data. Novelty in model design is considered in grading this part. Highlight in
your report what you consider as novelty in your design. The most infrequently
reported model designs will get higher score compared to those frequently
examined among other students. [10 points]

Model 1 (Bi-directional RNN):

The first model | tried is a bi-directional LSTM. | picked an RNN style model because of
its ability to exploit the sequential nature of the data, i.e., the data points are contiguous
in space. Additionally, | wanted the RNN to be bi-directional because, from the earlier
data analysis, | determined that we are trying to predict the peaks in the training data.
Conceptually, it should be much easier to find the peaks if we have data from both sides
of the peak.

Novelty:

Concerning the novelty of this model, | doubt that very many people in this class tried a
bi-directional LSTM simply because bi-directional RNNs weren’t covered in much detail
in this course. Additionally, | have what is essentially an average pooling layer at the end
the network which empirically | found works better than the fully connected layer, but |
believe that this is a somewhat unusual choice.

Performance:

Loss: 0.08754191547632217
Eff: 0.7617046376170463
FP: 0.16056788642271547



Model Code:

# Bidirectional recurrent neural network (many-to-many)
class BiRNN_2(nn.Module):
def _ init_ (self, input size, hidden_size, num layers):

super (BiRNN_2, self). init_ ()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm 1 = nn.LSTM(input_size, hidden_size, num layers, batch_first=True, bidirectional=True)
self.lstm_2 = nn.LSTM(2*hidden_size, 1, 1, batch_first=True, bidirectional=True)

def forward(self, x):
X = torch.transpose(x, 2, 1)
# x dim: [batch size, sentence length, feature dim]
out, _ = self.lstm_1(x) # out: tensor of shape (batch_size, seq_length, hidden_size*2)
# output dim: [batch size, sentence length, hidden dim*2]
# hidden dim: [2, batch size, hidden dim]

out, _ = self.lstm 2(out)

# average pooling
out = (out[:, :, 0] + out[:, :, 11)/2

return out.squeeze()

Model 2 (CNN):

The second model that | tried was a 1d CNN. | got the idea for this model through some
experience | have with using neural networks to identify a particular sound (e.g., a snare
drum being struck) in audio tracks. For these types of problems, it is common to use 1d
CNN architectures. As this data for this project seems similar to the data used for
identifying sounds in an audio track, | posited that | similar model might work.

Novelty:

| don’t think that 1d convolutions or 1d transpose convolutions were mentioned in class,
so | doubt many other people in the class tried this approach. That said, | do believe that
this makes sense, and | have seen similar approaches used on similar data. Additionally, |
decided to reduce the size of the length of the data similar to an encoder and then
increase the image width similar to a decoder. | did this because it would both allow me
to cover a larger portion of the data with a smaller kernel and speed up computation.
This is likely somewhat unique for this problem, although | am aware of similar CNN
designs.

Performance:



Loss: 2.2011327743530273
Eff: 0.8917643589176436
FP: 1.624875024995001



Model:

[ 1 class

CNN(torch.nn.Module):

def _ init_ (self):

super (CNN, self). init_ ()
# Encoder

# 4000
self.convl = torch.nn.Convld(in_channels=4, out_channels=64, kernel_size=5, stride=4, padding=2)
self.bnl = torch.nn.BatchNormld(num features=64)

# 1000
self.conv2 = torch.nn.Convld(in_channels=64, out_channels=128, kernel_size=5, stride=2, padding=2)
self.bn2 = torch.nn.BatchNormld(num features=128)

# 500
self.conv3 = torch.nn.Convld(in_channels=128, out_channels=256, kernel_size=5, stride=2, padding=2)
self.bn3 = torch.nn.BatchNormld(num_ features=256)

# 250
self.conv4 = torch.nn.Convld(in_channels=256, out_channels=256, kernel size=5, stride=2, padding=2)
self.bn4 = torch.nn.BatchNormld(num_ features=256)

# Decoder

# 125
self.tconvl = torch.nn.ConvTransposeld(in_channels=256, out_channels=256, kernel_size=5, stride=2, padding=2, output_padding=1)
self.bn5 = torch.nn.BatchNormld(num_features=256)

# 250
self.tconv2 = torch.nn.ConvTransposeld(in_channels=256, out_channels=128, kernel_size=5, stride=2, padding=2, output_padding=1)
self.bn6é = torch.nn.BatchNormld(num_ features=128)

# 500
self.tconv3 = torch.nn.ConvTransposeld(in_channels=128, out_channels=64, kernel size=5, stride=2, padding=2, output_padding=1)
self.bn7 = torch.nn.BatchNormld(num features=64)

# 1000
self.tconv4 = torch.nn.ConvTransposeld(in_channels=64, out_channels=32, kernel_size=5, stride=4, padding=2, output_padding=3)

self.bn8 = torch.nn.BatchNormld(num_ features=(32))

# 4000
# reduces out_channels
self.conv5 = torch.nn.Convld(in_channels=(32), out_channels=1, kernel_size=1, stride=1, padding=0)

def forward(self, input_x):

# x dim: [batch size, feature dim=4, sentence length=4000]

convl_x = self.convl(input_x)
x = self.bnl(convl_x)

conv2_x = self.conv2(x)
x = self.bn2(conv2_x)

conv3_x = self.conv3(x)
x = self.bn3(conv3_x)

conv4_x = self.conv4(x)
x = self.bn4(convéd_x)

x = self.tconvl(x)
x = self.bn5(x)

x = self.tconv2(x)
self.bn6(x)

x
n

x = self.tconv3(x)
self.bn7(x)

»
I

x = self.tconv4(x)
self.bn8(x)

X
L}

x = self.conv5(x)

return x.squeeze()



Model 3 (RCNN):

For my third model, | used an RCNN. The idea behind this model was that, when
examining the data, it seemed to me that data from about 100 “distance” (where
“distance” is whatever this distance between points in the data is) could be useful in
identifying the peaks. A RNN isn't capable to remembering dependencies for this long, so
| figured that | could reduce that length of the data from 4000 down to 500 and then run
a bi-directional LSTM over the data. Transpose convolutions could then be used to
return the image to its original shape. Additionally, | used skip connections in an attempt
to allow gradients to backpropagate as far as possible.

Novelty:

| believe this model to be fairly unique. It combines the concepts of 1d convolutions, 1d
transpose convolutions, bi-direction LSTMs, and skip connects. None of these concepts
where talked about much, if at all, in lecture, so | find it unlikely that many other student
have a similar architecture. That said, while RCNNs are somewhat uncommon, they are
still used.

Performance:

Loss: 0.05866293981671333
Eff: 0.7837867728378677
FP: 0.17436512697460507



Model:

[ ] class RCNN(torch.nn.Module):
def _ init_ (self, hidden_size, num layers):
super (RCNN, self). init ()

# Encoder

# 4000
self.convl = torch.nn.Convld(in_channels=4, out_channels=64, kernel size=5, stride=2, padding=2)
self.bnl = torch.nn.BatchNormld(num_ features=64)

# 2000
self.conv2 = torch.nn.Convld(in_channels=64, out_channels=128, kernel size=5, stride=2, padding=2)
self.bn2 = torch.nn.BatchNormld(num_ features=128)

# 1000
self.conv3 = torch.nn.Convld(in_channels=128, out_channels=256, kernel size=5, stride=2, padding=2)
self.bn3 = torch.nn.BatchNormld(num_features=256)

# 500
self.lstm 1 = nn.LSTM(256, hidden_size, num_layers, batch first=True, bidirectional=True)

# Decoder

# 500
self.tconvl = torch.nn.ConvTransposeld(in_channels=2*hidden_size, out_channels=128, kernel_size=5, stride=2, padding=2, output_padding=1)
self.bn5 = torch.nn.BatchNormld(num_ features=2%128)

# 1000
self.tconv2 = torch.nn.ConvTransposeld(in_channels=2*128, out_channels=64, kernel size=5, stride=2, padding=2, output_padding=1)
self.bné = torch.nn.BatchNormld(num_ features=2%64)

# 2000
self.tconv3 = torch.nn.ConvTransposeld(in_channels=2*64, out_channels=32, kernel size=5, stride=2, padding=2, output_padding=1)
self.bn7 = torch.nn.BatchNormld(num_features=(32+4))

° # 4000

# reduces out_channels
self.conv5 = torch.nn.Convld(in_channels=(32+4), out_channels=1, kernel_size=1, stride=1, padding=0)

def forward(self, input_x):
# x dim: [batch size, feature dim=4, sentence length=4000]

# Encoder
convl_x = self.convl(input_x)
x = self.bnl(convl_x)

conv2_x = self.conv2(x)
x = self.bn2(conv2_x)

conv3_x = self.conv3(x)
x = self.bn3(conv3_x)

# RNN
X = X.permute(0, 2, 1)
x, _ = self.lstm 1(x)

X = x.permute(0, 2, 1)

*

Decoder
X = torch.cat((self.tconvl(x), conv2_x), dim=1)
x = self.bn5(x)

x = torch.cat((self.tconv2(x), convl_x), dim=1)
= self.bn6(x)

»
[

X = torch.cat((self.tconv3(x), input_x), dim=1)
x = self.bn7(x)

x = self.conv5(x)

return x.squeeze()

(Note: | also tried a fully connected network to try and get a baseline for performance.
But the model failed to learn much of anything, so | decided to leave it out.)



3. Report how you performed appropriate hyperparameter tuning. List all the
hyperparameters considered and the combination of hyperparameters explored.
Clearly demonstrate how you selected the optimum choice of hyperparameters
for your models. [5 points]

(Note: code included in separate file. Also, | am counting the hidden dimension and
number of layers a hyperparameters. | do this because Andrew Ng counts them as
hyperparameters in the provided lecture video. Although, people could disagree about
whether these should be counted as hyperparameters or whether they are more
fundamental to the architecture.)

| used what is sometimes called “Grad Student Descent” or what Andrew Ng called “The
Panda Approach” to select my hyperparameters. Basically, this means that | picked a set
of hyperparameters, run the model, looked at the performance, and then tried to update
the hyperparameters to perform better based on the results | saw from the old
hyperparameters. | used this approach as opposed to grid search or random search
because | didn’t feel that | had the compute available to run a large number of models. |
determined which hyperparameters were best based on validation loss.

RNN:

Hyperparameters:

Ir=0.001, hidden_size=64, num_layers=2

Loss:

o = Now s v o o~

T T T T T T T T
0 20 40 60 80 100 120 140

Validation Performance:

Loss: 0.14711976051330566
Eff: 0.6983705669837057
FP: 0.10237952409518096



Sample Output (predicted on top):

Vertically stacked subplots
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Hyperparameters:
Ir=0.005, hidden_size=64, num_layers=2

Loss:

0110

0.105

0.100

0.095

0.090

0.085

0.080

0 20 40 6 8 100 120 140
Validation Performance:

Loss: 0.09495712071657181
Eff: 0.0
FP: 0.0

Sample Output (predicted on top):



Vertically stacked subplots
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Hyperparameters:

Ir=0.001, hidden_size=96, num_layers=2

Loss:
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Validation Performance:

Loss: 0.09109372645616531
Eff: 0.769114502691145
FP: 0.16176764647070585

Sample Output (predicted on top):



Vertically stacked subplots
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Hyperparameters:

Ir=0.0005, hidden_size=96, num_layers=2

Loss:
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Validation Performance:

Loss: 0.08754191547632217
Eff: 0.7617046376170463
FP: 0.16056788642271547

Sample Output (predicted on top):
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CNN:
Hyperparameters:
Ir=0.001, beta1=0.9, beta2=0.999
Loss:

0 20 40 e 8 100 120 140
Validation Performance:

Loss: 3.8393235206604004
Eff: 0.8776450637764507
FP: 1.3637272545490902

Sample Output (predicted on top):
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Hyperparameters:

Ir=0.0005, beta1=0.95, beta2=0.9995

Loss:

0 20 40 60 80 100 120 140

Validation Performance:

Loss: 3.062436103820801
Eff: 0.8727420187274202
FP: 1.45750849830034

Sample Output (predicted on top):



Vertically stacked subplots
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Hyperparameters:

Ir=0.001, beta1=0.9, beta2=0.9

Loss:

0 20 40 e 8 100 120 140
Validation Performance:

Loss: 2.2011327743530273
Eff: 0.8917643589176436
FP: 1.624875024995001

Sample Output (predicted on top):
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RCNN:

Hyperparameters:
Ir=0.001, hidden_size=64, num_layers=2

Loss:
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Validation Performance:

Loss: 4.4561028480529785
Eff: 0.8607240286072403
FP: 1.3273345330933812

Sample Output (predicted on top):
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Hyperparameters:

Ir=0.0005, hidden_size=64, num_layers=2



Loss:

0 20 40 e 8 100 120 140
Validation Performance:

Loss: 4.017274379730225
Eff: 0.8290569932905699
FP: 0.7096580683863227

Sample output (predicted on top):

Vertically stacked subplots
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Hyperparameters:

Ir=0.0005, hidden_size=96, num_layers=2

Loss:
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Validation Performance:

Loss: 4.517522811889648
Eff: 0.8171864631718646
FP: 1.2723455308938212

Sample Output:
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4. Show how you studied the impact of sample size on validation set efficiency for
each of the models considered. [5 points]

To study the impact of sample size on validation set efficiency | did three runs for each
model with an increasing sample size. Below are the results:

RNN (Ir=0.0005, hidden_size=96, num_layers=2):

5,000 sample points:

Loss: 0.08754191547632217
Eff: 0.7617046376170463
FP: 0.16056788642271547



10,000 sample points:

Loss: 0.05557173117995262
Eff: 0.784597802845978
FP: 0.14037192561487702

15,000 sample points:
Loss: 0.05449014529585838

Eff: 0.7900169579001696
FP: 0.15476904619076184

RCNN (Ir=0.0005, hidden_size=64, num_layers=3):

5,000 sample points:

Loss: 0.05866293981671333
Eff: 0.7837867728378677
FP: 0.17436512697460507

10,000 sample points:

Loss: 0.053513798862695694
Eff: 0.8207992332079923
FP: 0.21715656868626274

15,000 sample points:

Loss: 0.05029470846056938
Eff: 0.7874732728747327
FP: 0.14437112577484504

CNN (Ir=0.001, betal=0.9, beta2=0.9):

5,000 sample points:



Loss: 2.2011327743530273
Eff: 0.8917643589176436
FP: 1.624875024995001

10,000 sample points:

Loss: 2.7491302490234375
Eff: 0.8739954287399543
FP: 1.3117376524695061

15,000 sample points:

Loss: 2.052672863006592
Eff: 0.8903634889036349
FP: 1.5336932613477305

From these results, it appears that running the models on larger samples sizes tends to
slightly increase their efficiency. But, my tests did not find a strong relationship between
the two.



