
Deep Learning Project 
 

1. [Bonus question] Demonstrate a good understanding of the data that involves 
visualizing data and show how this understanding is used in model design. You 
are not required to answer this question, but extra points will be offered if you 
answer this.  [5 points] 

(Note: Full code provided in separate file) 

First, we load in “Set_1.npz”. To start off, let’s look at the shape of the data: 

 

We have a batch size of 128. Our X is a Tensor of size 4*4000, and our y is a tensor of 
size 4000. 

From the provided project description, we know that the X first dimension of X 
represents the 4 features, and the second dimension represents 4000 points in space 
along straight line. 

Now, let’s examine if the dataset has any nans. 



 
 
It appears that X doesn’t have any nans, but y has 3998 nans about of 128*4000 total values. 
That is ~1% of the data in y. We will need to handle this somehow (maybe by setting the values 
to 0). 
 
Now, let’s look at the head of the data. 
 

  



That is a lot of zeroes.  
 
Let’s try graphing X: 
 

  

  
 
And now y: 
 

 
 
It looks almost like y is trying to predict location of the peaks in the first two features of X. Let’s 
try superimposing the graphs. 
 



 
 
Yup. It seems like we are trying to find the peaks. I’m not exactly sure what the 3rd and 4th 
feature of X are, but it seems like we are trying to find the peaks in the first two features of X. 
I’m somewhat familiar with task similar to this. For example, I have some knowledge for 
processing audio to try and identify the time that certain events happen in the track. (This 
problem seems somewhat similar). For these problems, it is typical to use RNNs or 1 
dimensional CNNs. So, I think that I will try both a bi-directional RNN and a CNN architecture. I 
might also train a fully connected network as a baseline. 
  



2. Clearly show at least three different model designs and your rationale for 
choosing them, and the three performance metrics (loss, efficiency, fp_rate) on 
the validation set. You want to have these three models vastly different from one 
another. For example, choosing three MLP with different #hidden units would be 
a bad choice. You are welcome to explore more than three models, as this will 
increase your chance of arriving at a better model for optimum performance on 
test data. Novelty in model design is considered in grading this part. Highlight in 
your report what you consider as novelty in your design. The most infrequently 
reported model designs will get higher score compared to those frequently 
examined among other students. [10 points] 

Model 1 (Bi-directional RNN): 

The first model I tried is a bi-directional LSTM. I picked an RNN style model because of 
its ability to exploit the sequential nature of the data, i.e., the data points are contiguous 
in space. Additionally, I wanted the RNN to be bi-directional because, from the earlier 
data analysis, I determined that we are trying to predict the peaks in the training data. 
Conceptually, it should be much easier to find the peaks if we have data from both sides 
of the peak.  

Novelty: 

Concerning the novelty of this model, I doubt that very many people in this class tried a 
bi-directional LSTM simply because bi-directional RNNs weren’t covered in much detail 
in this course. Additionally, I have what is essentially an average pooling layer at the end 
the network which empirically I found works better than the fully connected layer, but I 
believe that this is a somewhat unusual choice.  

Performance: 

 



Model Code: 

 

 

Model 2 (CNN): 
 
The second model that I tried was a 1d CNN. I got the idea for this model through some 
experience I have with using neural networks to identify a particular sound (e.g., a snare 
drum being struck) in audio tracks. For these types of problems, it is common to use 1d 
CNN architectures. As this data for this project seems similar to the data used for 
identifying sounds in an audio track, I posited that I similar model might work. 

Novelty: 

I don’t think that 1d convolutions or 1d transpose convolutions were mentioned in class, 
so I doubt many other people in the class tried this approach. That said, I do believe that 
this makes sense, and I have seen similar approaches used on similar data. Additionally, I 
decided to reduce the size of the length of the data similar to an encoder and then 
increase the image width similar to a decoder. I did this because it would both allow me 
to cover a larger portion of the data with a smaller kernel and speed up computation. 
This is likely somewhat unique for this problem, although I am aware of similar CNN 
designs. 

Performance: 



 



Model: 

 

 

  



Model 3 (RCNN): 
 
For my third model, I used an RCNN. The idea behind this model was that, when 
examining the data, it seemed to me that data from about 100 “distance” (where 
“distance” is whatever this distance between points in the data is) could be useful in 
identifying the peaks. A RNN isn’t capable to remembering dependencies for this long, so 
I figured that I could reduce that length of the data from 4000 down to 500 and then run 
a bi-directional LSTM over the data. Transpose convolutions could then be used to 
return the image to its original shape. Additionally, I used skip connections in an attempt 
to allow gradients to backpropagate as far as possible. 
 
Novelty: 
 
I believe this model to be fairly unique. It combines the concepts of 1d convolutions, 1d 
transpose convolutions, bi-direction LSTMs, and skip connects. None of these concepts 
where talked about much, if at all, in lecture, so I find it unlikely that many other student 
have a similar architecture. That said, while RCNNs are somewhat uncommon, they are 
still used. 
 

Performance: 

 
  



Model: 
 

 

 
 
(Note: I also tried a fully connected network to try and get a baseline for performance. 
But the model failed to learn much of anything, so I decided to leave it out.) 
  



3. Report how you performed appropriate hyperparameter tuning. List all the 
hyperparameters considered and the combination of hyperparameters explored. 
Clearly demonstrate how you selected the optimum choice of hyperparameters 
for your models. [5 points] 

(Note: code included in separate file. Also, I am counting the hidden dimension and 
number of layers a hyperparameters. I do this because Andrew Ng counts them as 
hyperparameters in the provided lecture video. Although, people could disagree about 
whether these should be counted as hyperparameters or whether they are more 
fundamental to the architecture.) 

I used what is sometimes called “Grad Student Descent” or what Andrew Ng called “The 
Panda Approach” to select my hyperparameters. Basically, this means that I picked a set 
of hyperparameters, run the model, looked at the performance, and then tried to update 
the hyperparameters to perform better based on the results I saw from the old 
hyperparameters. I used this approach as opposed to grid search or random search 
because I didn’t feel that I had the compute available to run a large number of models. I 
determined which hyperparameters were best based on validation loss.  

RNN: 

Hyperparameters: 

 

Loss: 

 

Validation Performance: 

 



Sample Output (predicted on top): 

 

Hyperparameters: 

 

Loss: 

 

Validation Performance: 

 

Sample Output (predicted on top): 



 

Hyperparameters: 

 

Loss: 

 

Validation Performance: 

 

Sample Output (predicted on top): 



 

Hyperparameters: 

 

Loss: 

 

Validation Performance: 

 

Sample Output (predicted on top): 



 

CNN: 

Hyperparameters: 

 

Loss: 

 

Validation Performance: 

 

Sample Output (predicted on top): 



 

Hyperparameters: 

 

Loss: 

 

Validation Performance: 

 

Sample Output (predicted on top): 



 

Hyperparameters: 

 

Loss: 

 

Validation Performance: 

 

Sample Output (predicted on top): 

 



RCNN: 

Hyperparameters: 

 

Loss: 

 

Validation Performance: 

 

Sample Output (predicted on top): 

 

Hyperparameters: 

 



Loss: 

 

Validation Performance: 

 

Sample output (predicted on top): 

 

Hyperparameters: 

 

Loss: 



 

Validation Performance: 

 

Sample Output: 

 

4. Show how you studied the impact of sample size on validation set efficiency for 
each of the models considered. [5 points] 

To study the impact of sample size on validation set efficiency I did three runs for each 
model with an increasing sample size. Below are the results: 

RNN (lr=0.0005, hidden_size=96, num_layers=2): 

5,000 sample points: 

 



10,000 sample points: 

 

15,000 sample points: 

 

RCNN (lr=0.0005, hidden_size=64, num_layers=3): 

5,000 sample points: 

 

10,000 sample points: 

 

15,000 sample points: 

 

CNN (lr=0.001, beta1=0.9, beta2=0.9): 

5,000 sample points: 



 

10,000 sample points: 

 

15,000 sample points: 

 

From these results, it appears that running the models on larger samples sizes tends to 
slightly increase their efficiency. But, my tests did not find a strong relationship between 
the two. 

 

 

 

 

 

 


